曼哈顿距离

欧氏距离是人们在解析几何里最常用的一种计算方法,但是计算起来比较复杂,要平方,加和,再开方,而人们在空间几何中度量距离很多场合其实是可以做一些简化的。曼哈顿距离就是由 19 世纪著名的德国犹太人数学家赫尔曼·闵可夫斯基发明的(图 1)。


赫尔曼·闵可夫斯基


赫尔曼·闵可夫斯基在少年时期就在数学方面表现出极高的天分,他是后来四维时空理论的创立者,也曾经是著名物理学家爱因斯坦的老师。

曼哈顿距离也叫出租车距离,用来标明两个点在标准坐标系上的绝对轴距总和。

欧氏距离里的距离计算:

曼哈顿距离中的距离计算:

曼哈顿距离中的距离计算公式比欧氏距离的计算公式看起来简洁很多,只需要把两个点坐标的 x 坐标相减取绝对值,y 坐标相减取绝对值,再加和。

从公式定义上看,曼哈顿距离一定是一个非负数,距离最小的情况就是两个点重合,距离为 0,这一点和欧氏距离一样。曼哈顿距离和欧氏距离的意义相近,也是为了描述两个点之间的距离,不同的是曼哈顿距离只需要做加减法,这使得计算机在大量的计算过程中代价更低,而且会消除在开平方过程中取近似值而带来的误差。不仅如此,曼哈顿距离在人脱离计算机做计算的时候也会很方便。