1.素数本身只能被自身整除。也就是质数的约数只有两个,即1和本身。
2.所有大于3的素数,都可以用6n-5 和6n-1表达,或6n+1和6n+5来表示。
3.若”k”不是”6xy+x-y”的方程解,也就是”k≠6xy+x-y”,那么”6k-1″一定是个素数。 4.若”k”不是”6xy+-(x+y)”的方程解,也就是”k≠6xy+-(x+y)”,那么”6k+1″一定是个素数。
5.由3.和4.假设,素数集合是由两条元素不重复的独立集合。
6.质数的个数公式π(n)是不减函数。且素数的分布个数接近于x/ln (x),这是素数定理。
7.素数本身是不可能有传统意义上的通项公式。
8.任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,当代入1时候这种分解是无限的,去掉1时分解则是唯一的。
9.质数的个数是无限的。
10.所有大于10的质数中,个位数只有1,3,7,9。
11.若n为正整数,在n^2到(n+1)^2之间至少有一个质数。
12.若n为大于或等于2的正整数,在n到n!之间至少有一个质数
13.若质数p为不超过n(n≥4)的最大质数,则p>n/2。
14.两个连续素数最大间隔可以任意大。
15.任意大于5的奇数都可以表示为三个素数之和。