STUN协议,探测NAT类型

1, STUN客户端(101:10)向STUN服务器(404:40)发送请求,要求得到自身经NAT映射后的地址(202:20):
      a,收不到服务器回复,则认为UDP被防火墙阻断,不能通信,网络类型:Blocked.
      b,收到服务器回复(地址要嘛是映射地址要嘛就是源地址),对比本地地址,如果相同(直接返回的就是源地址101:10),则认为无NAT设备(没经过NAT映射转换),进入第2步,否则认为有NAT设备,进入3步.
   2,(已确认无NAT设备)STUN客户端向STUN服务器发送请求,要求服务器从其他IP和PORT(505:50)向客户端回复包:
      a,收不到服务器从其他IP地址的回复,认为包被前置防火墙阻断,网络类型:Symmetric UDPFirewall.(如果没有NAT的话是无论如何都能收到回复的,只有一点受到防火墙的阻断,有时候杀毒软件也阻断)

b,收到则认为客户端处在一个开放的网络上,网络类型:Opened.

   3,(已确认存在NAT设备)STUN客户端(101:10)向STUN服务器(404:40)发送请求,要求服务器从其他IP和PORT(505:50)向客户端回复包:

a,收不到服务器从其他IP地址(包括IP和Port)的回复,认为包被前置NAT设备阻断,进入第4步.(如果不是前置的就相当于全开Opened或Full ConeNat类型,无论那个IP和端口都能接收到回复)
      b,收到则认为NAT设备类型为Full Cone,即网络类型:Full Cone NAT.(此没有什么限制的基本和没有NAT一样Opened)
  4, STUN客户端(101:10)向STUN服务器(404:40)的另外一个IP地址(505:40,端口不能改变)发送请求,要求得到自身经NAT映射后的地址(202:20,如果不是对称的应该返回这个映射地址),并对比之(与第一步中返回的映射地址比对)
      a,地址不相同,则网络类型:Symmetric NAT.(如果是对称类型,则101:10在向一个不同的IP地址(505,端口不变)发送请求时会映射一个新的端口,此处相当于生成一个202:21,比对不相同)
      b,相同则认为是Restricted NAT(受限的),进入第5步,进一步确认类型.
5, (已确认RestrictedNAT设备)STUN客户端(101:10)向STUN服务器(404:40)发送请求,要求服务器从相同IP(404)的其他PORT(41)向客户端回复包:
      a,收不到服务器从其他PORT地址的回复,认为包被前置NAT设备阻断,网络类型:Port Restricted coneNAT.(端口改变了,端口受限相当于我一个人A(101)向B(404)要右手(40端口)的苹果,而B左手(41端口)有个香蕉,A只要B的右手苹果,而B给了A一个左手的香蕉,A肯定是不要的,相当于收不到回复)
      b,收到则认为网络类型: Restricted cone NAT.(IP受限,对端口没什么要求,只要是404

这个IP就行,无论用那个端口都行)

以上实现过程作为服务器只有双IP的服务器才能实现,针对我们这些电脑只有一个IP的开发者来说,我们就得通过两台电脑来模拟实现双IP了,这地方上面请求的服务器地址就得改变一下了,个人认为这里的Server1:404地址的端口必须和Server2:505地址的端口一样,才能实现,端口相同也不会影响测试效果的.

来源:http://blog.csdn.net/hack8/article/details/6593768

客户端主机所在网络可以分为以下类型:

1, Opened: 即主机拥有公网IP,并且没有防火墙,可自由与外部通信.

2, Full Cone NAT: 主机前有NAT设备,

NAT规则如下:从主机UDP端口A发出的数据包都会对应到NAT设备出口IP的端口B,并且从任意外部地址发送到该NAT设备UDP端口B的包都会被转到主机端口A.

3, Restricted cone NAT: 主机前有NAT设备,

 NAT规则如下:从主机UDP端口A发出的数据包都会对应到NAT设备出口IP的端口B,但只有从之前该主机发出包的目的IP发出到该NAT设备UDP端口B的包才会被转到主机端口A.

4, Port Restricted cone NAT: 主机前有NAT设备,

  NAT规则如下:从主机UDP端口A发出的数据包都会对应到NAT设备出口IP的端口B,但只有从之前该主机发出包的目的IP/

解读Linux启动过程

转自:https://my.oschina.net/macwe/blog/1531024

解读Linux启动过程

 

1. 概述

本文解读一下从CPU加电自检到启动init进程的过程, 先通过下面这张图大致看一下Linux启动的整个过程。

本文的分析环境是GRUB 0.97 + Linux 2.6.18。

2. BIOS

CPU加电后首先工作在实模式并初始化CS:IP=FFFF:FFF0,BIOS的入口代码必须从该地址开始。BIOS完成相应的硬件检查并提供一系列中断服务例程,这些中断服务提供给系统软件访问硬件资源(比如磁盘、显示器等),最后选择一个启动盘加载第一个扇区(即:MBR,共512字节)数据到内存0x7C00处,并从这里开始执行指令(CS:IP=0000:7C00),对于笔者的电脑来说这就是GRUB的Stage1部分。

3. GRUB

GRUB的作用是bootloader,用来引导各种OS的。

3.1. Stage1

Stage1就是MBR,由BIOS把它从磁盘的0扇区加载到0x7c00处,大小固定位512字节,此时的CPU上下文如下:

eax=0011aa55 ebx=00000080 ecx=00000000 edx=00000080 esi=0000f4a0 edi=0000fff0
eip=00007c00 esp=00007800 ebp=00000000 iopl=0 nv up ei pl zr na po nc
cs=0000 ds=0000 es=0000 fs=0000 gs=0000 ss=0000 eflags=00000246
// 注: dl=启动磁盘号, 00H~7FH是软盘, 80H~FFH是硬盘。

因为只能是512字节,大小受限,它就干一件事,把Stage2的第一个512字节读取到0x8000,然后jmp到0x8000继续执行。

3.1.1. 读磁盘

磁盘扇区寻址有两种方式:

  • CHS方式:传统的方式,使用三元组(10位Cylinder, 8位Head, 6位Sector)来寻找扇区,最大只能找到(2^10) * (2^8) * (2^6) * 512 = 8GB的硬盘容量,现在的硬盘明显不够用了。
  • LBA方式:现在的方式,使用48位线性地址来寻找扇区,最大支持(2^48) * 512 = 128PB的硬盘空间。虽然机械上还是CHS的结构,不过磁盘的固件会自动完成LBA到CHS的转换。

因为CHS明显不适合现在的硬盘,所以LBA模式寻址是现在的PC的标配了吧!万一磁盘不支持LBA或者是软盘,需要我们手工转换成CHS模式。转换公式如下(就是三维空间定位一个点的问题):

磁道号C = LBA / 每磁道的扇区数SPT / 盘面总HPC
磁头号H = (LBA / 每磁道的扇区数SPT) mod HPC
扇区号S = (LBA mod SPT) + 1

判断是否支持LBA模式

/* check if LBA is supported */
movb	$0x41, %ah
movw	$0x55aa, %bx
int	$0x13

如果返回成功(CF=1)并且BX值是0xAA55表示支持LBA寻址(用Extensions方法)。

注意:3.5英寸软盘需要使用CHS方式寻址,它的CHS参数是80个柱面、2个磁头、每个磁道18个扇区,每扇区512字节,共1.44MB容量。

LBA模式读的功能号是AH=42h,DL参数是磁盘号,DS:SI参数是Disk Address Packet(DAP)结构体的内存地址,定义如下:

struct DAP {
    uint8_t sz; // 结构体大小
    uint8_t unused;
    uint16_t sector_cnt; // 需要都的扇区总数
    struct dst_addr { // 内存地址,读到这里
        uint16_t offset;
        uint16_t segment;
    };
    uint64_t lba_addr;  // 磁盘的LBA地址
};

参考:

  • https://en.wikipedia.org/wiki/Logical_block_addressing#CHS_conversion
  • https://en.wikipedia.org/wiki/INT_13H

3.2. Stage2

Stage2就是GRUB剩下的全部的代码了,包括BIOS中断服务的封装给C代码使用、键盘驱动、文件系统驱动、串口、网络驱动等等,它提供了一个小型的命令行环境,可以解析用户输入命令并执行对OS的启动。

3.2.1. start.S

首先Stage2的头512字节(start.S)被加载到0x8000,并在这里开始执行,此时的CPU上下文如下:

eax=00000000 ebx=00007000 ecx=00646165 edx=00000080 esi=00007c05 edi=0000fff0
eip=00008000 esp=00001ffe ebp=00000000 iopl=0 nv up ei pl zr na po nc
cs=0000 ds=0000 es=0800 fs=0000 gs=0000 ss=0000 eflags=00000246

start.S的工作是把Stage2的后续部分全部加载到内存中(从0x8200开始),有103KB大小。

3.2.2. asm.S

asm.S是0x8200处的代码,先看一下CPU上下文环境:

eax=00000e00 ebx=00000001 ecx=00646165 edx=00000080 esi=00008116 edi=000081e8
eip=00008200 esp=00001ffe ebp=000062d8 iopl=0 nv up ei pl zr na po nc
cs=0000 ds=0000 es=1ae0 fs=0000 gs=0000 ss=0000 eflags=00000246
3.2.2.1. 最开始的代码应该设置好段寄存器和栈
cli
/* set up %ds, %ss, and %es */
/* cs=0000 ds=0000 es=0000 fs=0000 gs=0000 ss=0000 */
xorw	%ax, %ax
movw	%ax, %ds
movw	%ax, %ss
movw	%ax, %es

/* set up the real mode/BIOS stack */
movl	$STACKOFF, %ebp
movl	%ebp, %esp
sti

此时:

cs=0000 ds=0000 es=0000 ss=0000 esp=00001ff0 ebp=00001ff0。
3.2.2.2. 保护模式和实模式

因为GRUB没有实现自己的中断服务,所以访问硬件资源还是使用BIOS的中断服务例程(实模式)。GRUB的命令行环境是工作在保护模式下的,所以当GRUB需要访问BIOS中断的时候需要切换回实模式,于是在GRUB执行过程中会有频繁的实模式和保护模式的互相切换操作,当切换回实模式后别忘了保存保护模式下的栈指针

(1) 实模式进入保护模式

/* transition to protected mode */
DATA32	call EXT_C(real_to_prot)

/* The ".code32" directive takes GAS out of 16-bit mode. */
.code32

下图是实模式到保护模式的切换步骤:

GRUB没有设置分页机制和新的中断,所以GRUB的保护模式访问的是物理内存且是不能使用INT指令,不过对于bootloader来说够用了。因为需要切换到保护模式栈,原来的返回地址要放到新的栈上,以保证能够正常ret:

ENTRY(real_to_prot)
	...
	/* put the return address in a known safe location */
	movl	(%esp), %eax
	movl	%eax, STACKOFF  ; 把返回地址保存起来备用

	/* get protected mode stack */
	movl	protstack, %eax
	movl	%eax, %esp
	movl	%eax, %ebp      ; 设置保护模式的栈

	/* get return address onto the right stack */
	movl	STACKOFF, %eax
	movl	%eax, (%esp)    ; 把返回地址重新放到栈上
	
	/* zero %eax */
	xorl	%eax, %eax

	/* return on the old (or initialized) stack! */
	ret                     ; 正常返回

(2) 保护模式切换回实模式

	/* enter real mode */
	call	EXT_C(prot_to_real)
	
	.code16

下图说明了保护模式切换回实模式的步骤:

保护模式的栈需要保存起来以便恢复现场,让C代码正确运行,实模式的栈每次都重置为STACKOFF即可,和(1)一样,也要设置好返回地址:

ENTRY(prot_to_real)
	...
	/* save the protected mode stack */
	movl	%esp, %eax
	movl	%eax, protstack  ; 把栈保存起来

	/* get the return address */
	movl	(%esp), %eax
	movl	%eax, STACKOFF   ; 返回地址放到实模式栈里

	/* set up new stack */
	movl	$STACKOFF, %eax  ; 设置实模式的栈
	movl	%eax, %esp
	movl	%eax, %ebp
	... 
3.2.2.3. 创建C运行时环境

C的运行环境主要包括栈、bss数据区、代码区。随着切换到保护模式,栈已经设置好了;随着Stage2从磁盘加载到内存,代码区和bss区都已经在内存了,最后还需要把bss区给初始化一下(清0),接下来即可愉快的执行C代码了。

3.2.2.4. 执行cmain()

先执行一个init_bios_info()获取BIOS的信息,比如被BIOS使用的内存空间(影响我们Linux映像加载的位置)、磁盘信息、ROM信息、APM信息,最后调用cmain()。 cmain()函数在stage2.c文件中,其中最主要的函数run_menu()是启动一个死循环来提供命令行解析执行环境。

3.2.2.5. load_image()

如果grub.cfg或者用户执行kenrel命令,会调用load_image()函数来将内核加载到内存中。至于如何加载linux镜像在Documentation的boot.txt和zero-page.txt有详细说明。

load_image()是一个非常长的函数,它要处理支持的各种内核镜像格式。Linux镜像vmlinuz文件头是struct linux_kernel_header结构体,该结构体里头说明了这个镜像使用的boot协议版本、实模式大小、加载标记位和需要GRUB填写的一些参数(比如:内核启动参数地址)。

  • 实模式部分:始终被加载到0x90000位置,并从0x90200开始执行(linux 0.11就这样做了)。
  • 保护模式部分:我们现在使用的内核比较大(大于512KB),叫做bzImage,加载到0x100000(高位地址,1MB)开始的位置,可以任意大小了。否则小内核zImage放在0x10000到mbi.mem_lower * 1024(一般是0x90000)区域。
3.2.2.6. linux_boot()

我们正常的启动过程调用的是big_linux_boot()函数,把实模式部分copy到0x90000后,设置其他段寄存器值位0x9000, 设置CS:IP=9020:0000开始执行(使用far jmp)。

至此GRUB的工作完成,接下来执行权交给Linux了。

4. setup.S

该文件在arch/i386/boot/setup.S,主要作用是收集硬件信息并进入保护模式head.S。初始的CPU上下文如下:

eax=00000000 ebx=00009000 ecx=00000000 edx=00000003 esi=002d8b54 edi=0009a000
eip=00000000 esp=00009000 ebp=00001ff0 iopl=0 nv up di pl zr na po nc
cs=9020 ds=9000 es=9000 fs=9000 gs=9000 ss=9000  eflags=00000046

4.1. 自身检查

先检查自己setup.S是否合法,主要是检查末尾的两个magic是否一致

# Setup signature -- must be last
setup_sig1:	.word	SIG1
setup_sig2:	.word	SIG2

4.2. 收集硬件信息

主要是通过BIOS中断来收集硬件信息。收集的信息包括内存大小、键盘、鼠标、显卡、硬盘、APM等等。收集的硬件信息保存在0x9000处:

# 设置ds = 0x9000,用来保存硬件信息
movw	%cs, %ax			# aka SETUPSEG
subw	$DELTA_INITSEG, %ax 		# aka INITSEG
movw	%ax, %ds

这里看一下如何获取内存大小,这样OS才能进行内存管理。这里用三种方法获取内存信息:

  1. e820h:请求中断INT 15H,AX=E820H时返回可用的物理内存信息,e820由此得名,参考http://www.uruk.org/orig-grub/mem64mb.html。由于内存的使用是不连续的,通过连续调用INT 15H得到所有可用的内存区域,每次查询得到的结果ES:DI是个struct address_range_descriptor结构体,返回的结果都是64位的,完全能够满足目前PC的需求了。
     struct address_range_descriptor {
     	uint32_t base_addr_low;   // 起始物理地址
     	uint32_t base_addr_high;
     	uint32_t length_low;      // 长度
     	uint32_t length_high;
     	uint8_t type;             // 1=OS可用的, 2=保留的,OS不可用
     };
    
  2. e801h:通过请求中断INT15h,AX=e801H返回结果,最高只能得到4GB内存结果。
  3. 88h:古老的办法,通过请求中断INT15h,AH=88H返回结果。最高只能得到16MB或者64MB的内存,现在的电脑不适用了。

扩展阅读:http://wiki.osdev.org/Detecting_Memory_(x86)#E820h

4.3. 启用A20

让CPU访问1MB以上的扩展内存,否则访问的是X mod 1MB的地址。下面列举三种开启A20的方法:

  1. 使用I/0端口92H,AL的将1-bit置1
     inb	$0x92, %al			# Configuration Port A
     orb	$0x02, %al			# "fast A20" version
     andb	$0xFE, %al			# don't accidentally reset
     outb	%al, $0x92
    
  2. 使用BIOS中断INT 0x15, AX=0x2401
     movw	$0x2401, %ax
     pushfl					# Be paranoid about flags
     int	$0x15
     popfl
    
  3. 使用键盘控制器
     movb	 $0xD1, %al			# command write
     outb	 %al, $0x64
     call	 empty_8042
    
     movb	 $0xDF, %al			# A20 on
     outb	 %al, $0x60
     call	 empty_8042
    

4.4. 进入保护模式

4.4.1. 临时的GDT和IDT

这里的IDT全部是0;Linux目前使用的GDT如下:

gdt:
	.fill GDT_ENTRY_BOOT_CS,8,0

	.word	0xFFFF				# 4Gb - (0x100000*0x1000 = 4Gb)
	.word	0				# base address = 0
	.word	0x9A00				# code read/exec
	.word	0x00CF				# granularity = 4096, 386
						#  (+5th nibble of limit)

	.word	0xFFFF				# 4Gb - (0x100000*0x1000 = 4Gb)
	.word	0				# base address = 0
	.word	0x9200				# data read/write
	.word	0x00CF				# granularity = 4096, 386
						#  (+5th nibble of limit)
gdt_end:

这里只定义了两个DPL为0的代码段和数据段,只给内核使用的。

4.4.1. 设置CR0.PE

这里使用lmsw指令,它和mov cr0, X是等价的

movw	$1, %ax				# protected mode (PE) bit
lmsw	%ax				# This is it!
jmp	flush_instr

4.5. 调转到head.S(CS:EIP=0x10:100000)

至此硬件信息就收集完成,这些收集到的硬件信息都保存在0x90000处,后续OS可以使用这些硬件信息来管理了。

5. head.S

该文件位于arch/i386/kernel/head.S,这个是内核保护模式的代码的起点,笔者电脑的位置在0x100000,此时CPU上下文是:

eax=00000001 ebx=00000000 ecx=0000ff03 edx=47530081 esi=00090000 edi=00090000
eip=00100000 esp=00008ffe ebp=00001ff0 iopl=0 nv up di pl nz na pe nc
cs=0010 ds=0018 es=0018 fs=0018 gs=0018 ss=0018               eflags=00000002

注:已经进入保护模式,CS的值是GDT表项的索引。

它的作用就是设置真正的分段机制和分页机制、启动多处理器、设置C运行环境,最后执行start_kernel()函数。

5.1. startup_32

5.1.1. 加载临时的分段机制

boot_gdt_table就是临时的GDT,其实和start.S的一样:

	lgdt boot_gdt_descr - __PAGE_OFFSET
	movl $(__BOOT_DS),%eax
	movl %eax,%ds
	movl %eax,%es
	movl %eax,%fs
	movl %eax,%gs

ENTRY(boot_gdt_table)
	.fill GDT_ENTRY_BOOT_CS,8,0
	.quad 0x00cf9a000000ffff	/* kernel 4GB code at 0x00000000 */
	.quad 0x00cf92000000ffff	/* kernel 4GB data at 0x00000000 */

5.1.2. 初始化内核bss区和内核启动参数

为了让C代码正常运行,bss区全部清0,启动参数需要移动到boot_params位置。

5.1.3. 启动临时分页机制

临时的页表,只要能够满足内核使用就行。页目录表是swapper_pg_dir,它是一个4096大小的内存区域,默认全是0。一般__PAGE_OFFSET=0xC0000000(3GB),这是要把物理地址0x00000000映射到0xc0000000的地址空间(内核地址空间)。下面是页目录表和页表的初始化代码:

page_pde_offset = (__PAGE_OFFSET >> 20); // 3072,页目录的偏移

	// 页目录表存放在pg0位置,arch/i386/kernel/vmlinux.lds中定义
	movl $(pg0 - __PAGE_OFFSET), %edi
	movl $(swapper_pg_dir - __PAGE_OFFSET), %edx  // edx是页目录表的地址
	movl $0x007, %eax			/* 0x007 = PRESENT+RW+USER */
10:
	// 创建一个页目录项
	leal 0x007(%edi),%ecx			/* Create PDE entry */
	movl %ecx,(%edx)			/* Store identity PDE entry */
	movl %ecx,page_pde_offset(%edx)		/* Store kernel PDE entry */
	addl $4,%edx   // 指向swapper_pg_dir的下一个项
	movl $1024, %ecx   // 每个页表1024个项目
11:
	stosl  // eax -> [edi]; edi = edi + 4
	addl $0x1000,%eax // 每次循环,下一个页目录项
	loop 11b
	/* End condition: we must map up to and including INIT_MAP_BEYOND_END */
	/* bytes beyond the end of our own page tables; the +0x007 is the attribute bits */
	leal (INIT_MAP_BEYOND_END+0x007)(%edi),%ebp  // 页表覆盖到这里就终止
	cmpl %ebp,%eax
	jb 10b
	movl %edi,(init_pg_tables_end - __PAGE_OFFSET)

下面是对上面代码的翻译(这样更有利于理解):

extern uint32_t *pg0;  // 初始值全0
extern uint32_t *swapper_pg_dir;  // 初始值全0

void init_page_tables()
{
	uint32_t PAGE_FLAGS = 0x007; // PRESENT+RW+USER
	uint32_t page_pde_offset = (_PAGE_OFFSET >> 20); // 3072
	uint32_t addr = 0 | PAGE_FLAGS;  // 内存地址+页表属性
	uint32_t *pg_dir_ptr = swapper_pg_dir; // 页目录表项指针
	uint32_t *pg0_ptr = pg0;  // 页表项指针
	
	for (;;) {
		// 设置页目录项,同时映射两个地址,让物理地址和虚拟地址都能访问,
		*pg_dir_ptr = pg0 | PAGE_FLAGS;     // 0, 1
		*(uint32_t *)((char *)pg_dir_ptr + page_pde_offset) = pg0 | PAGE_FLAGS;  // 768, 769
		pg_dir_ptr++;
		
		// 设置页表项目
		for (int i = 0; i < 1024; i++) {
			*pg0++ = addr;
			addr += 0x1000;
		}
		// 退出条件,实际上只映射了两个页目录就退出了(0,1,768, 769)
		if (pg0[INIT_MAP_BEYOND_END] | PAGE_FLAGS) >= addr) {
			init_pg_tables_end = pg0_ptr;
			return;
		}
	}	
};

5.1.4. 设置栈

/* Set up the stack pointer */
	lss stack_start,%esp

ENTRY(stack_start)
	.long init_thread_union+THREAD_SIZE
	.long __BOOT_DS

/* arch/i386/kernel/init_task.c
* Initial thread structure.
*
* We need to make sure that this is THREAD_SIZE aligned due to the
* way process stacks are handled. This is done by having a special
* "init_task" linker map entry..
*/
union thread_union init_thread_union 
	__attribute__((__section__(".data.init_task"))) =
		{ INIT_THREAD_INFO(init_task) };

内核最初使用的栈是init_task进程的,也就是0号进程的栈,这个进程是系统唯一一个静态定义而不是通过fork()产生的进程。

5.1.5. 设置真正的IDT和GDT

	lgdt cpu_gdt_descr   // 真正的GDT
	lidt idt_descr    //真正的IDT
	ljmp $(__KERNEL_CS),$1f   // 重置CS
1:	movl $(__KERNEL_DS),%eax	# reload all the segment registers
	movl %eax,%ss			# after changing gdt.  // 重置SS

	movl $(__USER_DS),%eax		# DS/ES contains default USER segment
	movl %eax,%ds
	movl %eax,%es

	xorl %eax,%eax			# Clear FS/GS and LDT
	movl %eax,%fs
	movl %eax,%gs
	lldt %ax
	cld			# gcc2 wants the direction flag cleared at all times
	// push一个假的返回地址以满足 start_kernel()函数return的要求
	pushl %eax		# fake return address  

对于IDT先全部初始化成ignore_int例程:

setup_idt:
	lea ignore_int,%edx
	movl $(__KERNEL_CS << 16),%eax
	movw %dx,%ax		/* selector = 0x0010 = cs */
	movw $0x8E00,%dx	/* interrupt gate - dpl=0, present */

	lea idt_table,%edi
	mov $256,%ecx
rp_sidt:
	movl %eax,(%edi)
	movl %edx,4(%edi)
	addl $8,%edi
	dec %ecx
	jne rp_sidt
	ret

ignore_int例程就干一件事,打印一个错误信息"Unknown interrupt or fault at EIP %p %p %p\n"

对于GDT我们最关心的__KERNEL_CS、__KERNEL_DS、__USER_CS、__USER_DS这4个段描述符:

.quad 0x00cf9a000000ffff	/* 0x60 kernel 4GB code at 0x00000000 */
.quad 0x00cf92000000ffff	/* 0x68 kernel 4GB data at 0x00000000 */
.quad 0x00cffa000000ffff	/* 0x73 user 4GB code at 0x00000000 */
.quad 0x00cff2000000ffff	/* 0x7b user 4GB data at 0x00000000 */

至此分段机制、分页机制、栈都设置好了,接下去可以开心的jmp start_kernel了。

6. start_kernel

该函数在linux/init/main.c文件里。我们可以认为start_kernel是0号进程init_task的入口函数,0号进程代表整个linux内核且每个CPU有一个。 这个函数开始做一系列的内核功能初始化,我们重点看rest_init()函数。

6.1.rest_init

这是start_kernel的最后一行,它启动一个内核线程运行init函数后就什么事情也不做了(死循环,始终交出CPU使用权)。

static void noinline rest_init(void)
{
	kernel_thread(init, NULL, CLONE_FS | CLONE_SIGHAND); // 启动init
	……
	/* Call into cpu_idle with preempt disabled */
	cpu_idle();  // 0号进程什么事也不做
}

6.2. init()

该函数的末尾fork了”/bin/init”进程。这样1号进程init就启动了,接下去就交给init进程去做应用层该做的事情了!

// 以下进程启动后父进程都是0号进程
if (ramdisk_execute_command) {
	run_init_process(ramdisk_execute_command);
	printk(KERN_WARNING "Failed to execute %s\n",
			ramdisk_execute_command);
}

/*
 * We try each of these until one succeeds.
 *
 * The Bourne shell can be used instead of init if we are 
 * trying to recover a really broken machine.
 */
if (execute_command) {
	run_init_process(execute_command);
	printk(KERN_WARNING "Failed to execute %s.  Attempting "
				"defaults...\n", execute_command);
}
run_init_process("/sbin/init");
run_init_process("/etc/init");
run_init_process("/bin/init");
run_init_process("/bin/sh");

附录1. 启动多核CPU

以上解读的内容只在0号CPU上执行,如果是多CPU的环境,还要初始化其他的CPU。多CPU启动的起点是start_kernel()->rest_init()>init()->smp_init()。而smp_init()函数给每个CPU上调用cpu_up()do_boot_cpu()函数,每个CPU都要再走一遍head.S的流程,然后启动自己的idle进程(内核态0号进程)。

附录2. x64的不同

i386和x64的启动代码主要区别在head.S中。

  • 页表格式不同,i386使用两级页表,x64使用4级页表。
  • 多了兼容32位的代码段和数据段__USER32_CS、__USER32_DS和__KERNEL32_CS
  • x64段寄存器用法和i386的不同:x64下面CS、DS、ES、SS不用了,始终为0。而FS、GS寄存器的用法倒像是实模式下的,主要考虑是保留两个作为基地址好让线性地址计算方便。FS:XX = MSR_FS_BASE + XXGS:XX = MSR_GS_BASE + XX, 不是段描述符索引了(像实模式的分段)。

婚姻周年纪念日

第1年:纸婚
第2年:棉婚 第3年:皮革婚 第4年:水果婚 第5年:木婚 第6年:铁婚
第7年:铜婚
第8年:陶婚 第9年:柳婚
第10年:铝婚
第11年:钢婚 第12年:丝婚 第13年:丝带婚 第14年:象牙婚
第15年:水晶婚 第20年:瓷婚
第25年:银婚
第30年:珍珠婚 第35年:珊瑚婚 第40年:红宝石婚 第45年:蓝宝石婚
第50年:金婚
第55年:绿宝石婚
第60年:钻石婚
第70年:白金婚
第75年:白石婚
第80年:   橡树婚


结婚后的每一个纪念日都有不同的名称,不同的象征意义:
第一年是 纸婚(意思是一张纸印的婚姻关系,比喻最初结合薄如纸,要小心保护!)Paper wedding
第二年 棉婚(加厚一点,尚须磨炼!)Cotton wedding
第三年 皮革婚(开始有点韧性)Leather wedding
第四年 丝婚(缠紧,如丝般柔韧,你浓我浓。)Silk wedding
第五年 木婚(硬了心,已经坚韧起来)Wood wedding
第六年 铁婚(夫妇感情如铁般坚硬永固) Iron or Sugar Candy wedding
第七年 铜婚(比铁更不会生锈,坚不可摧) Copper wedding
第八年 陶婚 (如陶瓷般美丽,并须呵护)Pottery wedding
第九年 柳婚 (像垂柳一样,风吹雨打都不怕。)Willow wedding
第十年 锡婚 (锡器般坚固,不易跌破。)Tin wedding
第十一年 钢婚 (如钢铁般坚硬,今生不变。)Steel wedding
第十二年 链婚 (像铁链一样,心心相扣)Linen wedding
第十三年 花边婚 (多姿多彩,多样化的生活)Lace wedding
第十四年 象牙婚 (时间愈久,色泽愈光亮美丽)Ivory wedding
第十五年 水晶婚 (透明清澈而光彩夺目)Crystal wedding


以后每5年一个名称:
第二十年 瓷婚 (光滑无暇,需呵护,不让跌破)China wedding
第二十五年 银婚 (已有恒久价值,是婚后第一个大庆典)Silver wedding
第三十年 珍珠婚 (像珍珠般浑圆,美丽和珍贵)Pearls wedding
第三十五年 珊瑚婚 (嫣红而宝贵,生色出众)Coral wedding
第四十年 红宝石婚 (名贵难得,色泽永恒)Ruby wedding
第四十五年 蓝宝石婚 (珍贵灿烂,值得珍惜)Sapphire wedding
第五十年 金婚 (至高无上,婚后第二大庆典,情如金坚,爱情历久弥新)Golden wedding
第五十五年 翡翠婚 (如翡翠玉石,人生难求)Emerald wedding
第六十年 钻石婚(夫妻一生中最大的一次结婚典庆,珍奇罕有,今生无悔,是最隆重庆典) Diamond wedding (Diamond Jubilee)
凡六十一七十结婚周年纪念,中国人统称为“福禄寿婚”。

linux 常见终端热键以及Ctrl+C、Ctrl+Z比较 [转]

linux中存在一些按键,那么如何查阅目前的一些按键内容了?可以利用stty(setting tty 终端机的意思)。stty也可以帮助设置终端机的输入按键代表意义。

 >$ stty -a
speed 38400 baud; rows 24; columns 80; line = 0;
intr = ^C; quit = ^\; erase = ^?; kill = ^U; eof = ^D; eol = ;
eol2 = ; swtch = ; start = ^Q; stop = ^S; susp = ^Z; rprnt = ^R;
werase = ^W; lnext = ^V; flush = ^O; min = 1; time = 0;
-parenb -parodd cs8 -hupcl -cstopb cread -clocal -crtscts
-ignbrk -brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl ixon -ixoff
-iuclc -ixany -imaxbel -iutf8
opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel nl0 cr0 tab0 bs0 vt0 ff0
isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt
echoctl echoke

需要注意的是特殊字体那几个,此外^表示[Ctrl]那个按键的意思,如:intr = ^C表示利用【Ctrl】+c来完成的。几个重要的代表意义是:

eof:End of file的意思,代表结束输入;

erase:向前删除一个字符;

intr:送出一个interrupt(中断)的信号给目前正在运行的程序;
kill:删除在目前命令行上的所有字符;

quit:送出一个quit的信号给目前正在运行的进程;

start:在某个进程停止后,重新启动它的输出;

stop:停止目前屏幕的输出;

susp:送出一个terminal stop的信号给正在运行的进程;

如果你想要执行[ctrl]+h来进行字符的删除,那么可以执行:

root@mycomputer:~# stty erase ^h
Ctrl+C终止目前的命令

Ctrl+D输入结束(eof),例如邮件结束的时候

eof代表End of file的意思,代表结束输入

Ctrl+M就是Enter

Ctrl+S暂停屏幕的输出

Ctrl+Q恢复屏幕的输出

Ctrl+U在提示符下,将整行命令删除

Ctrl+Z暂停目前的命令

Ctrl+Z和Ctrl+C都是中断命令,但是它们的作用却不一样。

Ctrl+C是强制中断程序的执行,而Ctrl+Z是将任务中断,但是此任务并没有结束,还是在进程中只是保持挂起的状态,用户可以使用fg/bg操作继续前台或后台飞任务,fg命令重新启动前台被中断的任务。bg命令把被中断的任务放在后台执行。

来源:http://blog.sina.com.cn/s/blog_14ecbe4520102wrmv.html

 

信号具有平台相关性,不同平台下能使用的信号种类是有差异的。

Linux下支持的信号:

SEGV, ILL, FPE, BUS, SYS, CPU, FSZ, ABRT, INT, TERM, HUP, USR1, USR2, QUIT, BREAK, TRAP, PIPE

Windows下支持的信号:

SEGV, ILL, FPE, ABRT, INT, TERM, BREAK

React 定义组件的参数-生命周期

定义组件的参数-生命周期
创建期:getDefaultProps
创建期:getInitialState
创建期:componentWillMount
创建期:componentDidMount
存在期:componentWillReceiveProps
存在期:shouldComponentUpdate
存在期:componentWillUpdate
存在期:componentDidUpdate
销毁&清理期:componentWillUnmount

定义组件的参数-生命周期
生命周期相关参数,是React定义组件时提供的一系列处理函数(钓子函数),这些函数会在组件生命周期的某个阶段调用。

创建期:getDefaultProps

object getDefaultProps()

创建期:getInitialState

object getInitialState()
在组件挂载前(即:创建期)调用一次,其返回值将做为this.state的初始值。

getInitialState()方法会组件类创建的时候调用一次,其返回值会被缓存下来。该方法用于设置props属性的默认值,但仅对于非必须属性。如果父组件没有指定props中的某个值,此返回对象中的相应属性将会合并到this.props。

getInitialState()方法会在组件实例创建前调用,这时还不能使用this.props属性,且其返回对象是在所有实例间共享的。

创建期:componentWillMount

componentWillMount()
componentWillMount()服务器端和客户端都只调用一次,在初始化渲染执行之前被调用。如果在这个方法内调用setState()方法,render()方法将会收到更新后的state,也就是说这是我做在组件渲染前最后一个修改state的机会。

创建期:componentDidMount

componentDidMount()
componentDidMount()会在组件初始化(渲染完成)后立即调用一次,我们一般在这个方法中使用this.getDOMNode()方法访问原始DOM。

存在期:componentWillReceiveProps

componentWillReceiveProps(object nextProps)

componentWillReceiveProps在将要接受新的props时被调用
componentWillReceiveProps()方法会在组件生命周期的存在期调用,当组件感知到props属性改变,会调用此方法。render()方法将会在其后调用,这时我们可以通过this.setState()来阻止组件的再次渲染。

存在期:shouldComponentUpdate

boolean shouldComponentUpdate(object nextProps, object nextState)
shouldComponentUpdate()方法发生在组件生命周期的存在器,在组件收到新的props或state。在这个方法中,我们可以访问组件的props和state属性,通过这两个属性可以确认组件是否需要更新,如果不需要更新,则返回false,则其后的方法将不会在执行。如:

shouldComponentUpdate: function(nextProps, nextState) {
return nextProps.id !== this.props.id;
}

存在期:componentWillUpdate

componentWillUpdate(object nextProps, object nextState)
componentWillUpdate()会在收到新的props或state后调用,类似componentWillMount()。

存在期:componentDidUpdate

componentDidUpdate(object prevProps, object prevState)
componentDidUpdate()会在组件重新渲染后立即被调用,当我们需要在组件重新渲染后操作DOM则需要使用这个方法。

销毁&清理期:componentWillUnmount

componentWillUnmount()
componentWillUnmount()是组件销毁&清理期唯一调用的方法,它会在组件从DOM中移除时被调用,这时我们可以清理一些状态或清理在componentDidMount中创建的DOM元素。

优秀程序员眼中的整洁代码[转]

有多少程序员,就有多少定义。所以我只询问了一些非常知名且经验丰富的程序员。

image.php_-57.gif

Bjarne Stroustrup,C++语言发明者,C++ Programming Language(中译版《C++程序设计语言》)一书作者。

我喜欢优雅和高效的代码。代码逻辑应当直截了当,叫缺陷难以隐藏;尽量减少依赖关系,使之便于维护;依据某种分层战略完善错误处理代码;性能调至最优,省得引诱别人做没规矩的优化,搞出一堆混乱来。整洁的代码只做好一件事。

Bjarne用了“优雅”一词。说得好!我MacBook上的词典提供了如下定义:外表或举止上令人愉悦的优美和雅观;令人愉悦的精致和简单。注意对“愉悦”一词的强调。Bjarne显然认为整洁的代码读起来令人愉悦。读这种代码,就像见到手工精美的音乐盒或者设计精良的汽车一般,让你会心一笑。

Bjarne也提到效率——而且两次提及。这话出自C++发明者之口,或许并不出奇;不过我认为并非是在单纯追求速度。被浪费掉的运算周期并不雅观,并不令人愉悦。留意Bjarne怎么描述那种不雅观的结果。他用了“引诱”这个词。诚哉斯言。糟糕的代码引发混乱!别人修改糟糕的代码时,往往会越改越烂。

务实的Dave Thomas和Andy Hunt从另一角度阐述了这种情况。他们提到破窗理论4。窗户破损了的建筑让人觉得似乎无人照管。于是别人也再不关心。他们放任窗户继续破损。最终自己也参加破坏活动,在外墙上涂鸦,任垃圾堆积。一扇破损的窗户开辟了大厦走向倾颓的道路。

Bjarne也提到完善错误处理代码。往深处说就是在细节上花心思。敷衍了事的错误处理代码只是程序员忽视细节的一种表现。此外还有内存泄漏,还有竞态条件代码。还有前后不一致的命名方式。结果就是凸现出整洁代码对细节的重视。

Bjarne以“整洁的代码只做好一件事”结束论断。毋庸置疑,软件设计的许多原则最终都会归结为这句警语。有那么多人发表过类似的言论。糟糕的代码想做太多事,它意图混乱、目的含混。整洁的代码力求集中。每个函数、每个类和每个模块都全神贯注于一事,完全不受四周细节的干扰和污染。

image.php_-58.gif

Grady Booch,Object Oriented Analysis and Design with Applications(中译版《面向对象分析与设计》)一书作者。

整洁的代码简单直接。整洁的代码如同优美的散文。整洁的代码从不隐藏设计者的意图,充满了干净利落的抽象和直截了当的控制语句。

Grady的观点与Bjarne的观点有类似之处,但他从可读性的角度来定义。我特别喜欢“整洁的代码如同优美的散文”这种看法。想想你读过的某本好书。回忆一下,那些文字是如何在脑中形成影像!就像是看了场电影,对吧?还不止!你还看到那些人物,听到那些声音,体验到那些喜怒哀乐。

阅读整洁的代码和阅读Lord of the Rings(中译版《指环王》)自然不同。不过,仍有可类比之处。如同一本好的小说般,整洁的代码应当明确地展现出要解决问题的张力。它应当将这种张力推至高潮,以某种显而易见的方案解决问题和张力,使读者发出“啊哈!本当如此!”的感叹。

窃以为Grady所谓“干净利落的抽象”(crisp abstraction),乃是绝妙的矛盾修辞法。毕竟crisp几乎就是“具体”(concrete)的同义词。我MacBook上的词典这样定义crisp一词:果断决绝,就事论事,没有犹豫或不必要的细节。尽管有两种不同的定义,该词还是承载了有力的信息。代码应当讲述事实,不引人猜测。它只该包含必需之物。读者应当感受到我们的果断决绝。

image.php_-59.gif

“老大”Dave Thomas,OTI公司创始人,Eclipse战略教父

整洁的代码应可由作者之外的开发者阅读和增补。它应当有单元测试和验收测试。它使用有意义的命名。它只提供一种而非多种做一件事的途径。它只有尽量少的依赖关系,而且要明确地定义和提供清晰、尽量少的API。代码应通过其字面表达含义,因为不同的语言导致并非所有必需信息均可通过代码自身清晰表达。

Dave老大在可读性上和Grady持相同观点,但有一个重要的不同之处。Dave断言,整洁的代码便于其他人加以增补。这看似显而易见,但亦不可过分强调。毕竟易读的代码和易修改的代码之间还是有区别的。

Dave将整洁系于测试之上!要在十年之前,这会让人大跌眼镜。但测试驱动开发(Test Driven Development)已在行业中造成了深远影响,成为基础规程之一。Dave说得对。没有测试的代码不干净。不管它有多优雅,不管有多可读、多易理解,微乎测试,其不洁亦可知也。

Dave两次提及“尽量少”。显然,他推崇小块的代码。实际上,从有软件起人们就在反复强调这一点。越小越好。

Dave也提到,代码应在字面上表达其含义。这一观点源自Knuth的“字面编程”(literate programming)5。结论就是应当用人类可读的方式来写代码。

image.php_-60.gif

Michael Feathers,Working Effectively with Legacy Code(中译版《修改代码的艺术》)一书作者。

我可以列出我留意到的整洁代码的所有特点,但其中有一条是根本性的。整洁的代码总是看起来像是某位特别在意它的人写的。几乎没有改进的余地。代码作者什么都想到了,如果你企图改进它,总会回到原点,赞叹某人留给你的代码——全心投入的某人留下的代码。

一言以蔽之:在意。这就是本书的题旨所在。或许该加个副标题,如何在意代码。

Michael一针见血。整洁代码就是作者着力照料的代码。有人曾花时间让它保持简单有序。他们适当地关注到了细节。他们在意过。

image.php_-61.gif

Ron Jeffries,Extreme Programming Installed(中译版《极限编程实施》)以及Extreme Programming Adventures in C#(中译版《C#极限编程探险》)作者。

Ron初入行就在战略空军司令部(Strategic Air Command)编写Fortran程序,此后几乎在每种机器上编写过每种语言的代码。他的言论值得咀嚼。

近年来,我开始研究贝克的简单代码规则,差不多也都琢磨透了。简单代码,依其重要顺序:

能通过所有测试;

没有重复代码;

体现系统中的全部设计理念;

包括尽量少的实体,比如类、方法、函数等。

在以上诸项中,我最在意代码重复。如果同一段代码反复出现,就表示某种想法未在代码中得到良好的体现。我尽力去找出到底那是什么,然后再尽力更清晰地表达出来。

在我看来,有意义的命名是体现表达力的一种方式,我往往会修改好几次才会定下名字来。借助Eclipse这样的现代编码工具,重命名代价极低,所以我无所顾忌。然而,表达力还不只体现在命名上。我也会检查对象或方法是否想做的事太多。如果对象功能太多,最好是切分为两个或多个对象。如果方法功能太多,我总是使用抽取手段(Extract Method)重构之,从而得到一个能较为清晰地说明自身功能的方法,以及另外数个说明如何实现这些功能的方法。

消除重复和提高表达力让我在整洁代码方面获益良多,只要铭记这两点,改进脏代码时就会大有不同。不过,我时常关注的另一规则就不太好解释了。

这么多年下来,我发现所有程序都由极为相似的元素构成。例如“在集合中查找某物”。不管是雇员记录数据库还是名-值对哈希表,或者某类条目的数组,我们都会发现自己想要从集合中找到某一特定条目。一旦出现这种情况,我通常会把实现手段封装到更抽象的方法或类中。这样做好处多多。

可以先用某种简单的手段,比如哈希表来实现这一功能,由于对搜索功能的引用指向了我那个小小的抽象,就能随需应变,修改实现手段。这样就既能快速前进,又能为未来的修改预留余地。

另外,该集合抽象常常提醒我留意“真正”在发生的事,避免随意实现集合行为,因为我真正需要的不过是某种简单的查找手段。

减少重复代码,提高表达力,提早构建简单抽象。这就是我写整洁代码的方法。

Ron以寥寥数段文字概括了本书的全部内容。不要重复代码,只做一件事,表达力,小规模抽象。该有的都有了。

image.php_-62.gif

Ward Cunningham,Wiki发明者,eXtreme Programming(极限编程)的创始人之一,Smalltalk语言和面向对象的思想领袖。所有在意代码者的教父。

如果每个例程都让你感到深合己意,那就是整洁代码。如果代码让编程语言看起来像是专为解决那个问题而存在,就可以称之为漂亮的代码。

这种说法很Ward。它教你听了之后就点头,然后继续听下去。如此在理,如此浅显,绝不故作高深。你大概以为此言深合己意吧。再走近点看看。

“……深合己意”。你最近一次看到深合己意的模块是什么时候?模块多半都繁复难解吧?难道没有触犯规则吗?你不是也曾挣扎着想抓住些从整个系统中散落而出的线索,编织进你在读的那个模块吗?你最近一次读到某段代码、并且如同对Ward的说法点头一般对这段代码点头,是什么时候的事了?

Ward期望你不会为整洁代码所震惊。你无需花太多力气。那代码就是深合你意。它明确、简单、有力。每个模块都为下一个模块做好准备。每个模块都告诉你下一个模块会是怎样的。整洁的程序好到你根本不会注意到它。设计者把它做得像一切其他设计般简单。

那Ward有关“美”的说法又如何呢?我们都曾面临语言不是为要解决的问题所设计的困境。但Ward的说法又把球踢回我们这边。他说,漂亮的代码让编程语言像是专为解决那个问题而存在!所以,让语言变得简单的责任就在我们身上了!当心,语言是冥顽不化的!是程序员让语言显得简单。

稿源:代码湾

转自:https://www.oschina.net/news/87473/good-programmers-clean-code

mac os x10.12 安装thrift0.8 源码

参考:http://www.cnblogs.com/peterpanzsy/p/4210127.html

http://thrift.apache.org/docs/install/

一:安装最新版(自动安装)

最简单的是用homebrew进行安装

  • 安装homebrew 在终端输入ruby -e “$(curl -fsSL https://raw.github.com/Homebrew/homebrew/go/install)”
  • 安装thrift   brew install thrift

用brew安装的thrift版本是0.9的,but,我们项目中得thrift版本是0.8的,所以果断卸载掉。

brew uninstall thrift。转到下面第二种方法安装thrift

二:手动安装0.8.0

先安装依赖。

http://www.jattcode.com/installing-autoconf-automake-libtool-on-mac-osx-mountain-lion/

  • 安装BOOST

下载:http://www.boost.org/

命令:./bootstrap.sh,该命令用于生成bjam可执行文件,这个东西就是用来编译boost库

命令:sudo ./b2 threading=multi address-model=64 variant=release stage install

  • 安装 libevent

下载:http://libevent.org/

命令:./configure –prefix=/usr/local

命令:make

命令:sudo make install

  • 安装 Apache Thrift

下载:http://thrift.apache.org/

编译命令:./configure –prefix=/usr/local/ –with-boost=/usr/local/lib –with-libevent=/usr/local/lib –without-ruby –without-python –without-perl –without-php

有一些不相关的code genorater可以不要了,不然又得会报错。。。

安装命令:sudo make install

thrift -version 可以查看安装是否成功和版本

thrift-0.8.0.tar.gz

安装8的时候会遇到如下问题,并按如下解决:

以下摘自美团 Created by 曹继光, last modified by 严鑫 on 十月 10, 2014

Osx 10.9 是比较新的系统, 从这个版本开始, 系统默认编译器从GCC 改为 Clang(GCC -v 一下, 给的是clang 的提示).

Thrift 0.8  代码相对又比较老, 在新的编译器上遇到了下列一些问题.

问题1 :

多个源码文件报错 # include <tr1/functional>, file not found, 改为 # include <boost/tr1/functional.hpp> 解决.

需要修改以下文件:

  • lib/cpp/src/concurrency/ThreadManager.h  line:24
  • lib/cpp/src/async/TAsyncChannel.h line:23
  • lib/cpp/src/async/TAsyncChannel.cpp line:21
  • lib/cpp/src/async/TAsyncProcessor.h line:23
  • lib/cpp/src/async/TAsyncBufferProcessor.h line:23

原因:  在我试验的环境下, 此头文件有后缀名/usr/local/include/boost/ tr1/functional.hpp

问题2:

cpp 测试代码 lib/cpp/test/Benchmark.cpp 编译失败,  shared_ptr  ambigous , 用 boost::shared_ptr 替换 shared_ptr,

错误消失.

原因: Clang 支持 C++ 11, 其 标准库自带 shared_ptr(std::shared_ptr, 参考 http://zh.cppreference.com/w/cpp/memory/shared_ptr)

故需显式指定名字空间.

三:测试

下面编写一个HelloWorld.thrift 来测试一下,内容如下:

namespace java com.xx.mobile.hotel.sc.demo

service HelloWorldService {
string sayHello(1:string username)
}

执行:thrift -gen java HelloWorld.thrift 将在同级目录下生成gen-java/com/xx/mobile/hotel/sc/demo/HelloWorldService.java文件。

Hibernate5 注解 命名策略

对于hibernate注解实体中属性对应数据库表的列名,怎么命名的问题,我们肯定不愿一个个属性去配置

Hibernaet5.1 之前  在applicationContext.xml中的sessionFactory中配置

<property name=”namingStrategy”>
<bean class=”org.hibernate.cfg.ImprovedNamingStrategy”></bean>
</property>

5.1开始

hibernate.ejb.naming_strategy将不再被支持,而是被替换成了两个属性:
hibernate.physical_naming_strategy
hibernate.implicit_naming_strategy

对于physical_naming_strategy有两个常用的配置:

org.springframework.boot.orm.jpa.hibernate.SpringPhysicalNamingStrategy
org.hibernate.boot.model.naming.PhysicalNamingStrategyStandardImpl

对于PhysicalNamingStrategyStandardImplDefaultNamingStrategy的效果,

对于SpringPhysicalNamingStrategyImprovedNamingStrategy的效果。

法1:在sessionFactory的bean里配置

<property name=”PhysicalNamingStrategy”>
<bean class=”org.hibernate.boot.model.naming.PhysicalNamingStrategyStandardImpl”></bean>
</property>

法2:在sessionFactory bean的hibernateProperties property中配置

<prop key=”hibernate.physical_naming_strategy”>org.hibernate.boot.model.naming.PhysicalNamingStrategyStandardImpl</prop>

org.springframework.boot.orm.jpa.hibernate.SpringPhysicalNamingStrategy 是 spring boot 包提供地

<property name=”ImplicitNamingStrategy”>
<bean class=”org.hibernate.boot.model.naming.ImplicitNamingStrategyLegacyHbmImpl” />
</property>

或是

<prop key=”hibernate.implicit_naming_strategy”>org.hibernate.boot.model.naming.ImplicitNamingStrategyLegacyHbmImpl</prop>

centos7 安装 sqlserver

安装可参考:https://docs.microsoft.com/zh-cn/sql/linux/sql-server-linux-setup-red-hat

1.下载sql server的源,便于通过yum命令来安装

curl https://packages.microsoft.com/config/rhel/7/mssql-server.repo > /etc/yum.repos.d/mssql-server.repo

2.安装

yum install -y mssql-server

3.配置

sqlservr-setup 或 mssql-conf setup

安装客户端工具

可以参考:https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-tools

1.设置防火墙

要连接数据库,首先要打开防火墙上1433端口,也就是,增加tcp端口1433到公共区域,并且永久生效

2.下载客户端工具的源

curl https://packages.microsoft.com/config/rhel/7/prod.repo > /etc/yum.repos.d/msprod.repo

3.安装客户端工具

yum install mssql-tools unixODBC-devel

4.连接sql sever

sqlcmd -S localhost -U sa

 

chrome 谷歌浏览器出现 错误代码:ERR_UNSAFE_PORT 的解决办法

1、问题描述:

使用谷歌浏览器访问一个WEB项目,该项目设置的端口号为6000,结果不能访问:
 
2、问题所在:
出现此类问题的原因不是服务器端的问题,而是谷歌浏览器(FF浏览器也有)对一些特殊的端口进行了限制,具体有哪些端口进行了访问限制,请参见本文末。
 
3、问题解决:
最简单的办法就是直接修改搭建项目的端口号,避开这些谷歌限制的端口号。
 
谷歌浏览器限制的一些端口号:
1:    // tcpmux
7:    // echo
9:    // discard
11:   // systat
13:   // daytime
15:   // netstat
17:   // qotd
19:   // chargen
20:   // ftp data
21:   // ftp access
22:   // ssh
23:   // telnet
25:   // smtp
37:   // time
42:   // name
43:   // nicname
53:   // domain
77:   // priv-rjs
79:   // finger
87:   // ttylink
95:   // supdup
101:  // hostriame
102:  // iso-tsap
103:  // gppitnp
104:  // acr-nema
109:  // pop2
110:  // pop3
111:  // sunrpc
113:  // auth
115:  // sftp
117:  // uucp-path
119:  // nntp
123:  // NTP
135:  // loc-srv /epmap
139:  // netbios
143:  // imap2
179:  // BGP
389:  // ldap
465:  // smtp+ssl
512:  // print / exec
513:  // login
514:  // shell
515:  // printer
526:  // tempo
530:  // courier
531:  // chat
532:  // netnews
540:  // uucp
556:  // remotefs
563:  // nntp+ssl
587:  // stmp?
601:  // ??
636:  // ldap+ssl
993:  // ldap+ssl
995:  // pop3+ssl
2049: // nfs
3659: // apple-sasl / PasswordServer
4045: // lockd
6000: // X11
6665: // Alternate IRC [Apple addition]
6666: // Alternate IRC [Apple addition]
6667: // Standard IRC [Apple addition]
6668: // Alternate IRC [Apple addition]
6669: // Alternate IRC [Apple addition]

struts2 upgrade 2.3 to 2.5 migration 升级向导

Dependencies

Update Struts dependencies to 2.5.

Remove the following plugin dependencies because they were dropped and aren’t supported anymore.

  • Dojo Plugin
  • Codebehind Plugin
  • JSF Plugin
  • Struts1 Plugin

StrutsPrepareAndExecuteFilter

The org.apache.struts2.dispatcher.ng.filter.StrutsPrepareAndExecuteFilter was moved to org.apache.struts2.dispatcher.filter.StrutsPrepareAndExecuteFilter.

In web.xml replace this:

<filter>
    <filter-name>struts2</filter-name>
    <filter-class>org.apache.struts2.dispatcher.ng.filter.StrutsPrepareAndExecuteFilter</filter-class>
</filter>

with that:

<filter>
    <filter-name>struts2</filter-name>
    <filter-class>org.apache.struts2.dispatcher.filter.StrutsPrepareAndExecuteFilter</filter-class>
</filter>

There were other package changes, please read Version Notes 2.5 for more details.

DTD

Struts DTD was updated to 2.5 version.

In struts.xml replace 2.3 DTD version:

<!DOCTYPE struts PUBLIC
        "-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"

with 2.5:

<!DOCTYPE struts PUBLIC
        "-//Apache Software Foundation//DTD Struts Configuration 2.5//EN"

Tags attributes

The id attribute was replaced with var attribute in the following tags.

  • <s:action>
  • <s:append>
  • <s:bean>
  • <s:date>
  • <s:generator>
  • <s:iterator>
  • <s:merge>
  • <s:number>
  • <s:set>
  • <s:sort>
  • <s:subset>
  • <s:text>
  • <s:url>

If you have something like that in your code:

<s:url id="url" action="login">

change it to:

<s:url var="url" action="login">

The <s:set> tag name attribute is replaced with var attribute.

From:

<s:set id="str1" value="'string1 value'" />
<s:set name="str2" value="'string2 value'" />

to:

<s:set var="str1" value="'string1 value'" />
<s:set var="str2" value="'string2 value'" />

Also escape attribute was renamed to escapeHtml attribute.

From:

<s:property escape="true" var="someProperty"/>

to:

<s:property escapeHtml="true" var="someProperty"/>

Div tag

The <s:div> tag was dropped.

Replace <s:div> with plain HTML <div> tag.

Field names

If you have field names which starts with single lower case letter, for example:

private String sTrng;
public String getSTrng() {...}
public void setSTrng(String str) {...}

change accessors to getsTrng and setsTrng.

Or better yet, change field names to not contain single lower case letter:

private String strng;
public String getStrng() {...}
public void setStrng(String str) {...}

For additional info see WW-3909.

Tiles

Depending on from which version of struts you upgrade and whether you used tiles-plugin or tiles3-plugin you may need to do different steps.

Struts 2.5 just provides a tiles-plugin which uses Tiles3. So support for Tiles2 has been dropped as well as the name tiles3-plugin.

Now the only maven dependency looks like this:

maven dependecy for tiles-plugin
<dependency>
    <groupId>org.apache.struts</groupId>
    <artifactId>struts2-tiles-plugin</artifactId>
    <version>${struts2.version}</version>
</dependency>

You may need to update DTD in your tiles.xml files to Tiles3:

tiles3 dtd
<!DOCTYPE tiles-definitions PUBLIC
       "-//Apache Software Foundation//DTD Tiles Configuration 3.0//EN"

A Listener in web.xml is required. It is not necessary to configure paths to tiles.xml files here as they are picked up automatically.

StrutsTilesListener in web.xml
<listener>
  <listener-class>org.apache.struts2.tiles.StrutsTilesListener</listener-class>
</listener>

Optionally you may remove TilesDefinitions from XML and annotate actions instead. See Tiles Plugin for more details.

Temp/Work directory of ApplicationServer/ServletContainer

Users reported it was necessary for them to remove temp/work directory of their ApplicationServer/ServletContainer. Likely to force server to recompile JSPs.

来源:https://cwiki.apache.org/confluence/display/WW/Struts%202.3%20to%202.5%20migration

Java的基本数据类型

变量就是申请内存来存储值。也就是说,当创建变量的时候,需要在内存中申请空间。

内存管理系统根据变量的类型为变量分配存储空间,分配的空间只能用来储存该类型数据。

因此,通过定义不同类型的变量,可以在内存中储存整数、小数或者字符。

Java的两大数据类型:

  • 内置数据类型
  • 引用数据类型

内置数据类型

Java语言提供了八种基本类型。六种数字类型(四个整数型(默认是int 型),两个浮点型(默认是double 型)),一种字符类型,还有一种布尔型。

byte:

  • byte数据类型是8位、有符号的,以二进制补码表示的整数;(256个数字),占1字节
  • 最小值是-128(-2^7);
  • 最大值是127(2^7-1);
  • 默认值是0;
  • byte类型用在大型数组中节约空间,主要代替整数,因为byte变量占用的空间只有int类型的四分之一;
  • 例子:byte a = 100,byte b = -50。

short:

  • short数据类型是16位、有符号的以二进制补码表示的整数,占2字节
  • 最小值是-32768(-2^15);
  • 最大值是32767(2^15 – 1);
  • Short数据类型也可以像byte那样节省空间。一个short变量是int型变量所占空间的二分之一;
  • 默认值是0;

int:

  • int数据类型是32位、有符号的以二进制补码表示的整数;占3字节
  • 最小值是-2,147,483,648(-2^31);
  • 最大值是2,147,485,647(2^31 – 1);
  • 一般地整型变量默认为int类型;
  • 默认值是0;
  • 例子:int a = 100000, int b = -200000。

long:

  • long数据类型是64位、有符号的以二进制补码表示的整数;占4字节
  • 最小值是-9,223,372,036,854,775,808(-2^63);
  • 最大值是9,223,372,036,854,775,807(2^63 -1);
  • 这种类型主要使用在需要比较大整数的系统上;
  • 默认值是0L;
  • char数据类型可以储存任何字符;
  • 例子:char letter = ‘A’。

char 类型可以参与整型计算,然后转换成字符型

对于数值类型的基本类型的取值范围,我们无需强制去记忆,因为它们的值都已经以常量的形式定义在对应的包装类中了。请看下面的例子:

public class PrimitiveTypeTest {  
    public static void main(String[] args) {  
        // byte  
        System.out.println("基本类型:byte 二进制位数:" + Byte.SIZE);  
        System.out.println("包装类:java.lang.Byte");  
        System.out.println("最小值:Byte.MIN_VALUE=" + Byte.MIN_VALUE);  
        System.out.println("最大值:Byte.MAX_VALUE=" + Byte.MAX_VALUE);  
        System.out.println();  
  
        // short  
        System.out.println("基本类型:short 二进制位数:" + Short.SIZE);  
        System.out.println("包装类:java.lang.Short");  
        System.out.println("最小值:Short.MIN_VALUE=" + Short.MIN_VALUE);  
        System.out.println("最大值:Short.MAX_VALUE=" + Short.MAX_VALUE);  
        System.out.println();  
  
        // int  
        System.out.println("基本类型:int 二进制位数:" + Integer.SIZE);  
        System.out.println("包装类:java.lang.Integer");  
        System.out.println("最小值:Integer.MIN_VALUE=" + Integer.MIN_VALUE);  
        System.out.println("最大值:Integer.MAX_VALUE=" + Integer.MAX_VALUE);  
        System.out.println();  
  
        // long  
        System.out.println("基本类型:long 二进制位数:" + Long.SIZE);  
        System.out.println("包装类:java.lang.Long");  
        System.out.println("最小值:Long.MIN_VALUE=" + Long.MIN_VALUE);  
        System.out.println("最大值:Long.MAX_VALUE=" + Long.MAX_VALUE);  
        System.out.println();  
  
        // float  
        System.out.println("基本类型:float 二进制位数:" + Float.SIZE);  
        System.out.println("包装类:java.lang.Float");  
        System.out.println("最小值:Float.MIN_VALUE=" + Float.MIN_VALUE);  
        System.out.println("最大值:Float.MAX_VALUE=" + Float.MAX_VALUE);  
        System.out.println();  
  
        // double  
        System.out.println("基本类型:double 二进制位数:" + Double.SIZE);  
        System.out.println("包装类:java.lang.Double");  
        System.out.println("最小值:Double.MIN_VALUE=" + Double.MIN_VALUE);  
        System.out.println("最大值:Double.MAX_VALUE=" + Double.MAX_VALUE);  
        System.out.println();  
  
        // char  
        System.out.println("基本类型:char 二进制位数:" + Character.SIZE);  
        System.out.println("包装类:java.lang.Character");  
        // 以数值形式而不是字符形式将Character.MIN_VALUE输出到控制台  
        System.out.println("最小值:Character.MIN_VALUE="  
                + (int) Character.MIN_VALUE);  
        // 以数值形式而不是字符形式将Character.MAX_VALUE输出到控制台  
        System.out.println("最大值:Character.MAX_VALUE="  
                + (int) Character.MAX_VALUE);  
    }  
}  

编译以上代码输出结果如下所示:

基本类型:byte 二进制位数:8
包装类:java.lang.Byte
最小值:Byte.MIN_VALUE=-128
最大值:Byte.MAX_VALUE=127

基本类型:short 二进制位数:16
包装类:java.lang.Short
最小值:Short.MIN_VALUE=-32768
最大值:Short.MAX_VALUE=32767

基本类型:int 二进制位数:32
包装类:java.lang.Integer
最小值:Integer.MIN_VALUE=-2147483648
最大值:Integer.MAX_VALUE=2147483647

基本类型:long 二进制位数:64
包装类:java.lang.Long
最小值:Long.MIN_VALUE=-9223372036854775808
最大值:Long.MAX_VALUE=9223372036854775807

基本类型:float 二进制位数:32
包装类:java.lang.Float
最小值:Float.MIN_VALUE=1.4E-45
最大值:Float.MAX_VALUE=3.4028235E38

基本类型:double 二进制位数:64
包装类:java.lang.Double
最小值:Double.MIN_VALUE=4.9E-324
最大值:Double.MAX_VALUE=1.7976931348623157E308

基本类型:char 二进制位数:16
包装类:java.lang.Character
最小值:Character.MIN_VALUE=0
最大值:Character.MAX_VALUE=65535

Float和Double的最小值和最大值都是以科学记数法的形式输出的,结尾的”E+数字”表示E之前的数字要乘以10的多少倍。比如3.14E3就是3.14×1000=3140,3.14E-3就是3.14/1000=0.00314。

实际上,JAVA中还存在另外一种基本类型void,它也有对应的包装类 java.lang.Void,不过我们无法直接对它们进行操作。


引用类型

  • 引用类型变量由类的构造函数创建,可以使用它们访问所引用的对象。这些变量在声明时被指定为一个特定的类型,比如Employee、Pubby等。变量一旦声明后,类型就不能被改变了。
  • 对象、数组都是引用数据类型。
  • 所有引用类型的默认值都是null。
  • 一个引用变量可以用来引用与任何与之兼容的类型。
  • 例子:Animal animal = new Animal(“giraffe”)。

Java常量

常量就是一个固定值。它们不需要计算,直接代表相应的值。

常量指不能改变的量。 在Java中用final标志,声明方式和变量类似:

final double PI = 3.1415927;

虽然常量名也可以用小写,但为了便于识别,通常使用大写字母表示常量。

字面量可以赋给任何内置类型的变量。例如:

byte a = 68;
char a = 'A'

byte、int、long、和short都可以用十进制、16进制以及8进制的方式来表示。

当使用常量的时候,前缀0表示8进制,而前缀0x代表16进制。例如:

int decimal = 100;
int octal = 0144;
int hexa =  0x64;

和其他语言一样,Java的字符串常量也是包含在两个引号之间的字符序列。下面是字符串型字面量的例子:

"Hello World"
"two\nlines"
"\"This is in quotes\""

字符串常量和字符常量都可以包含任何Unicode字符。例如:

char a = '\u0001';
String a = "\u0001";

Java语言支持一些特殊的转义字符序列。

符号 字符含义
\n 换行 (0x0a)
\r 回车 (0x0d)
\f 换页符(0x0c)
\b 退格 (0x08)
\s 空格 (0x20)
\t 制表符
\” 双引号
\’ 单引号
\\ 反斜杠
\ddd 八进制字符 (ddd)
\uxxxx 16进制Unicode字符 (xxxx)

WordPress错误:无法安装这个包。PCLZIP_ERR_MISSING_FILE (-4) : Missing archive file

WordPress更新或是上传插件或主题错误时出现“无法安装这个包。PCLZIP_ERR_MISSING_FILE (-4) : Missing archive file”错误在某些配置不够完善的主机中可能会出现这种情况。这是因为空间中temp目录没有设置访问权限的问题,需要空间商为你设置目录访问权限,一般这种要求他们是不会理的,所以我们只能改变WordPress的上传临时目录。

解决方法如下

1. 通过网站FTP打开WordPress根目录下的 wp-config.php 文件,找到如下代码:

/** WordPress 目录的绝对路径。 */
if ( !defined('ABSPATH') )
define('ABSPATH', dirname(__FILE__) . '/');

2. 在下面增加如下代码即可:

/** 指定WordPress的临时目录 */
define('WP_TEMP_DIR', ABSPATH . 'wp-content/temp');

3. 最后在 /wp-content/ 文件夹下新建个一个名为 temp 的文件夹,然后再重新上传或者更新下载插件和主题就可以了。

最好叫 temp 权限和系统中一致为777

Spring Data JPA 查询方法支持的关键字

Keyword Sample JPQL snippet
And findByLastnameAndFirstname … where x.lastname = ?1 and x.firstname = ?2
Or findByLastnameOrFirstname … where x.lastname = ?1 or x.firstname = ?2
Is,Equals findByFirstname,findByFirstnameIs,findByFirstnameEquals … where x.firstname = 1?
Between findByStartDateBetween … where x.startDate between 1? and ?2
LessThan findByAgeLessThan … where x.age < ?1
LessThanEqual findByAgeLessThanEqual … where x.age <= ?1
GreaterThan findByAgeGreaterThan … where x.age > ?1
GreaterThanEqual findByAgeGreaterThanEqual … where x.age >= ?1
After findByStartDateAfter … where x.startDate > ?1
Before findByStartDateBefore … where x.startDate < ?1
IsNull findByAgeIsNull … where x.age is null
IsNotNull,NotNull findByAge(Is)NotNull … where x.age not null
Like findByFirstnameLike … where x.firstname like ?1
NotLike findByFirstnameNotLike … where x.firstname not like ?1
StartingWith findByFirstnameStartingWith … where x.firstname like ?1 (parameter bound with appended %)
EndingWith findByFirstnameEndingWith … where x.firstname like ?1 (parameter bound with prepended %)
Containing findByFirstnameContaining … where x.firstname like ?1 (parameter bound wrapped in %)
OrderBy findByAgeOrderByLastnameDesc … where x.age = ?1 order by x.lastname desc
Not findByLastnameNot … where x.lastname <> ?1
In findByAgeIn(Collection<Age> ages) … where x.age in ?1
NotIn findByAgeNotIn(Collection<Age> age) … where x.age not in ?1
True findByActiveTrue() … where x.active = true
False findByActiveFalse() … where x.active = false
IgnoreCase findByFirstnameIgnoreCase … where UPPER(x.firstame) = UPPER(?1)

通过解析方法名创建查询

通过前面的例子,读者基本上对解析方法名创建查询的方式有了一个大致的了解,这也是 Spring Data JPA 吸引开发者的一个很重要的因素。该功能其实并非 Spring Data JPA 首创,而是源自一个开源的 JPA 框架 Hades,该框架的作者 Oliver Gierke 本身又是 Spring Data JPA 项目的 Leader,所以把 Hades 的优势引入到 Spring Data JPA 也就是顺理成章的了。

框架在进行方法名解析时,会先把方法名多余的前缀截取掉,比如 find、findBy、read、readBy、get、getBy,然后对剩下部分进行解析。并且如果方法的最后一个参数是 Sort 或者 Pageable 类型,也会提取相关的信息,以便按规则进行排序或者分页查询。

在创建查询时,我们通过在方法名中使用属性名称来表达,比如 findByUserAddressZip ()。框架在解析该方法时,首先剔除 findBy,然后对剩下的属性进行解析,详细规则如下(此处假设该方法针对的域对象为 AccountInfo 类型):

  • 先判断 userAddressZip (根据 POJO 规范,首字母变为小写,下同)是否为 AccountInfo 的一个属性,如果是,则表示根据该属性进行查询;如果没有该属性,继续第二步;
  • 从右往左截取第一个大写字母开头的字符串(此处为 Zip),然后检查剩下的字符串是否为 AccountInfo 的一个属性,如果是,则表示根据该属性进行查询;如果没有该属性,则重复第二步,继续从右往左截取;最后假设 user 为 AccountInfo 的一个属性;
  • 接着处理剩下部分( AddressZip ),先判断 user 所对应的类型是否有 addressZip 属性,如果有,则表示该方法最终是根据 “AccountInfo.user.addressZip” 的取值进行查询;否则继续按照步骤 2 的规则从右往左截取,最终表示根据 “AccountInfo.user.address.zip” 的值进行查询。

可能会存在一种特殊情况,比如 AccountInfo 包含一个 user 的属性,也有一个 userAddress 属性,此时会存在混淆。读者可以明确在属性之间加上 “_” 以显式表达意图,比如 “findByUser_AddressZip()” 或者 “findByUserAddress_Zip()”。

在查询时,通常需要同时根据多个属性进行查询,且查询的条件也格式各样(大于某个值、在某个范围等等),Spring Data JPA 为此提供了一些表达条件查询的关键字,大致如下:

  • And — 等价于 SQL 中的 and 关键字,比如 findByUsernameAndPassword(String user, Striang pwd);
  • Or — 等价于 SQL 中的 or 关键字,比如 findByUsernameOrAddress(String user, String addr);
  • Between — 等价于 SQL 中的 between 关键字,比如 findBySalaryBetween(int max, int min);
  • LessThan — 等价于 SQL 中的 “<“,比如 findBySalaryLessThan(int max);
  • GreaterThan — 等价于 SQL 中的”>”,比如 findBySalaryGreaterThan(int min);
  • IsNull — 等价于 SQL 中的 “is null”,比如 findByUsernameIsNull();
  • IsNotNull — 等价于 SQL 中的 “is not null”,比如 findByUsernameIsNotNull();
  • NotNull — 与 IsNotNull 等价;
  • Like — 等价于 SQL 中的 “like”,比如 findByUsernameLike(String user);
  • NotLike — 等价于 SQL 中的 “not like”,比如 findByUsernameNotLike(String user);
  • OrderBy — 等价于 SQL 中的 “order by”,比如 findByUsernameOrderBySalaryAsc(String user);
  • Not — 等价于 SQL 中的 “! =”,比如 findByUsernameNot(String user);
  • In — 等价于 SQL 中的 “in”,比如 findByUsernameIn(Collection<String> userList) ,方法的参数可以是 Collection 类型,也可以是数组或者不定长参数;
  • NotIn — 等价于 SQL 中的 “not in”,比如 findByUsernameNotIn(Collection<String> userList) ,方法的参数可以是 Collection 类型,也可以是数组或者不定长参数;

开发高效率 Git命令 Cherry-Pick 摘樱桃

在实际的项目开发中(使用Git版本控制),在所难免会遇到没有切换分支开发、需要在另一个分支修改bug然后合并到当前分支的情况。之前遇到这种第一反应就是将分支合并过去来解决问题。如果你那些提交当中也穿插了其他人的提交而且他们的提交不可以合并到另一个分支,那么使用分支的合并将明显变得困难。下面分享给大家一个非常好用Git的命令Cherry-Pick来处理这些情况,从而提高开发的效率。

git Cherry-Pick 命令可以选择某一个分支中的一个或几个commit(s)来进行操作。你可以理解merge的个性定制版本

多次使用时要按提交的顺序进行合并,不然会导致某些文件发生冲突。这也是 容易 踩的坑。

  1. 当你的需求还没有完成的时候,其他人应该切换到另一分支开发的时候,你可以先在当前分支继续开发完,然后再选择Cherry-Pick命令合并过去就可以了。
  2. 当你需要将某个人的commits合并到另一开分时候,可以选择Cherry-Pick命令。(在实际的项目开发中,在所难免有人会提交错分支)
  3. 当你切换到某条分支修改Bug后,需要将修改提交合并另一分支,可以选择Cherry-Pick命令。

大型网站架构演化

原创地址:https://my.oschina.net/u/3039671/blog/836750

1. 最初始的网站架构

就像我们在自己电脑上搭建了一个论坛的网站,应用程序(例如Apache服务器)、数据库等都部署在我们自己的电脑上的。就可以正常运行了。

2. 应用服务和数据服务分离

我们的论坛越来越受欢迎,用户越来越多,论坛也十分越活。但是面临的问题是数据库中的信息越来越多,存储不够了。这个时候我们又多弄了几台服务器,应用程序(Apache服务器)、数据库和保存用户上传的文件(图片)单独部署在不同的服务器上。

应用服务器处理大量的业务逻辑,所以需要更好的CPU

数据库服务器需要完成数据的快速查询,所以需要更大的硬盘和内存

文件服务器保存用户上传的图片等文件,所以需要更大的硬盘

3. 使用缓存改善网站性能

我们的论坛用户继续快速增涨,我们发现访问速度越来越慢,原因就是很多请求都要访问数据库(例如,读取用户的个人信息,打个不恰当的比喻,每次进入一个话题,该话题中的每一个发言用户的信息都要从数据库中读取)。这个时候如果我们能缓存这些用户信息,每次从缓存中读取,这样对数据库的压力会大大降低,并且读取的性能也提升了很多。

4. 使用应用服务器集群改善网站的并发处理能力。

使用缓存后,又出现问题了,在论坛使用高峰的时候,单一应用服务器处理请求连接有限,这个时候就需要部署应用服务器集群,然后在使用一个负载均衡服务器(例如Nginx,apache Server)。

5. 数据库读写分离

用户继续增加,使用缓存后,虽然大部分读的操作都不会直接访问数据库,但是还是有一些读操作(缓存未命中,缓存过期)和全部的写操作还是必须操作数据库。当用户达到一定规模,数据库又成了系统的性能瓶颈。

在原来单一数据库的模式上,设置一个主数据库和从数据库,写操作的时候写入主数据库,然后从主数据库同步到从数据库中。读操作就在从数据库中读。当然我们需要一个数据访问的模块来处理这些逻辑

6. 使用反向代理和CDN加速网站响应

论坛用户反应,打开你们的论坛速度太慢了,再不改善我就不用了。

原因也很简单,一个访问请求中,也许存在很多静态资源(CSS,图片)等,又或者用户的使用的联通,我们的服务器在电信。适应反向代理和CDN技术可以大大改善用户请求的响应速度

7. 使用分布式数据库和分布式文件系统

虽然数据库进行读写分离以后,但是在我们论坛疯狂增涨下,任何强大的单一服务器的性能都是有限的,只有使用分布式系统,才能在业务不断增涨进行横向扩展。这个是我们最后手段了,使用之前应该先考虑能否根据业务不同来拆分数据库。例如我们论坛的包括了不同主题(汽车、房子、以及你懂的话题),如果按照这些主题来区分数据库,也是好的选择。(注意这个虽然也是要使用多个数据库,但和分布式数据库的概念是有很大区别的)

8. 使用NoSql和搜索引擎

论坛中,要搜索一些帖子,如果每次进行数据库查询,在数据量十分大的情况,显然是不可取的。还有就是对数据存储的要求,需要使用NoSql。

9. 业务拆分

为了以后以后的发展,我们的业务需要扩展,我们需要增加即时通讯的业务(类似微信),知识问答(类似知乎)。但是这些业务是分开开发的,如果和原有的论坛业务耦合在一起,在代码发布的时候,就会十分麻烦。这个时候,根据不同的业务,分别进行部署和发布。

10. 分布式服务

虽然按照业务进行拆分以后,虽然不同业务之间的管理隔离开来,但是问题又出现了,但我们部署了上万台服务器的时候,每个服务器都保持有与数据库的连接,这样会导致数据集的连接资源不够。而且还有个问题就是对一些基础功能每个业务之间有重复开发的问题。

所以,我们把一些基础业务功能提取出来,做成基础服务独立部署(登录服务、用户信息管理,日志功能等)。这样上层只用关系自己的业务逻辑,调用底层统一的基础服务。

一份简单实用的微交互设计指南

好的产品往往做好了两点:功能和细节设计。

功能吸引用户使用你的产品,细节设计将你的用户留下。优秀的细节设计能够使你的产品在众多竞品中脱颖而出,优秀的微交互设计往往能够让用户在初次使用产品时就能够留下深刻的印象。作为一个交互设计师,在设计微交互方案的时候不仅要考虑视觉上的冲击力,还要想办法赋予其信息传递的功能。

 什么是微交互?

微交互是产品中存在的某一个时刻,它完成了某一个小的任务。Dan Saffer在他的书中(Microinteractions)第一次描述了微交互的概念,这些小细节专注于服务这些必要的功能:

 交流回馈或者动作的结果回馈

完成某个单独的任务

增强直接操作的感觉

帮助用户在视觉上展示操作的结果,以及避免错误

一些明显的微交互例子包括:

当你将iPhone设置成静音时伴随出现的的震动提醒、屏幕上的静音icon。

7yw20160316
 

界面动画提示是否能够点击(当鼠标移到按钮上方时按钮的颜色改变)。

6yw20160316
 

  为什么使用微交互?

微交互是在对用户一些自然的需求/欲望的认知和反馈。用户从微交互提供的视觉、触觉等反馈中确认他们的行为被接受。微交互还可以引导用户正确的使用系统/产品。

  定义微交互的使用情景

微交互的一个特点是它可以被放置在很多的场景下,辅助不同的动作行为。总体来说,微交互的使用场景包括:

 展示系统/产品的状态

Jacob Nielsen在“可用性启发原则”中指出:让你的用户时刻了解发生的事情,用户期望对自己的行为立即得到反馈。但是有些情况下,app需要时间来等待行为处理完成后才能向用户发出反馈。因此,产品界面需要向用户指明此刻正在发生的事。

5yw20160316
 

▲ 下载进度表

  或者标明用户所在的位置:

4yw20160316
 

Tips:不要让你的用户感到无助,让你的用户了解实时的状态并且向其展示进度(比如进度条能够让用户了解进度,消除疑惑)

 提示更新

我们有时需要向用户推送通知来保证用户了解到事态的更新。动画可以做到这一点,动画可以吸引用户的注意力,避免用户忽视掉重要的信息。

3yw20160316
 

Tips:微交互里的动效应该遵循KISS原则(keep it simple, stupid),应该尽量简单直接。

关联上下文

使用动效来将用户的注意力平滑的在导航页面间切换,向用户解释页面里元素之间的关系,以及页面跳转的来龙去脉。这对于移动设备非常有用,因为屏幕的尺寸限制,移动界面中每一页的内容都很紧凑,使用动效来阐述内容之间的联系非常实用。

Tips:尽量让每个页面的导航简洁,这样可以有效避免用户在页面跳转中迷失。两个状态之间的却换应该清晰、平滑、快捷。在视觉上统一所有的交互形式,降低用户的学习成本。

 输入可视化

数据输入是应用中非常重要的环节,微交互可以使用现有的元素来展示数据输入的反馈,从而将这步操作变得更加高效。

2yw20160316
 

Tips:微交互能够帮助用户理解信息格式,来源,帮助用户便捷输入信息。

  引导互动

微交互可以鼓励用户、吸引用户与产品交互。它可以在用户体验中产生同理心。但是需要谨慎使用微交互,保证其在感官上不会冒犯你的用户。

时刻谨记:不要让用户感到厌烦,Keep it simple, stupid.

1yw20160316
 

Tips:关注用户的情感反馈,因为它在用户体验中起到很重要的作用。多做用户研究和情景调研,设计能被用户频繁使用的微交互方案。

  值得谨记的

微交互向用户展示动作反馈,通知以及信息框架结构

微交互应该通过转移用户的注意力、愉悦用户等来达到加快/缩短信息数据的传输

了解你的用户以及使用微交互的背景,能够让你的微交互方案更加的精准与高效

微交互必须能够支持长时效的使用,在第一次使用时感到惊喜的方案,可能在第一百次使用时就变成了困扰。

微交互方案应该人性化一些,并且在视觉上保持和谐。用户在使用的时候应该感到流畅,微交互的方案应该尽可能的从现实生活中获得启发,比如使用拟物化等手段,从而降低学习成本。

  总结

用心设计,思考用户使用产品的情景,再设计这些微交互时多运用一些生活中常见的操作模式、物体的运动轨迹、常见的行为方式等。产品的易用性来源于对细节的打磨,伟大的设计不仅仅在功能上满足用户的需求,还要在微交互的设计上打动人心。

Mac升级为macOS Sierra系统后xcode项目报错[转]

元旦升级了macOS Sierra系统,顿时感觉入坑了,本来好好的项目报如下错误:

resource fork, Finder information, or similar detritus not allowed
Command /usr/bin/codesign failed with exit code 1

在网上找了很多方法,都不使用我的项目,或者说网上的说法太模糊,现给出解决办法:

  1. 关闭Xcode,打开终端;
  2. 进入项目的文件夹, 有.xcodeproj文件

    ll

    发现有 drwxr-xr-x@ 7 liyunde staff 238B 1 3 12:36 iosapp.xcodeproj
    多了个@符号

  3. 输入指令

    xattr -rc .

  4.  打开项目重新运行,OK了!

网上说的太模糊,资料也少,自己浪费了很长时间,现在给出详细的解决办法,避免同行入坑,节省时间。

参考:http://blog.csdn.net/benpaofengling/article/details/52680542